Subject programme

- 1. Subject name / subject module: Object-Oriented Programming
- 2. Lecture language: English
 - 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Uniszkiewicz Cezary, mgr
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

	Teaching activities with the tutor																	
Mode									Form of	classes								Total
of study		sow	ECTS	Laboratory work	sow	ECTS	 sow	ECTS		sow	ECTS	 sow	ECTS	 sow	ECTS	 SOW	ECTS	ECTS
Full-time studies				38	50	3 5												3,5
Part-time studies						3,3												3,3
Credit rigor				graded assig	gnmen	it												

Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student work- load (full-time stud- ies/part-time studies)
Participation in laboratory classes	38
Preparation to the practical tests	48
Participation in an exam / graded assignment / final grading	2
Total student workload (TSW)	88
ECTS credits	3,5
* Student's workload related to practical forms	88
Student's workload in classes requiring direct participation of academic teachers	38

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

Programming

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spec	cific learning outcomes for the subject			Methods for testing of				
Outcome sym- bol	Outcome description	Form	Teaching method	(checking, assessing) learning outcomes				
	Knowledge							
K_W04	Student has advanced knowledge in the field of technical informatics especially in the field object-oriented programming in C#, necessary to understand at an advanced level the complex dependencies of mechatronic systems and to apply this knowledge in pra		inquiry methods	Activity during classes, practical test				
к_W06	Student knows and understands basics issues in the field of technical computer science related to object-oriented programming in C# language, as well as practical applications of this knowledge.	Laboratory work						
K_W10	Student has detailed knowledge related to the application of the following in mechatronics: methodology of object- oriented programming.							
	Skills							
K_U02	Student is able to use their object-oriented programming knowledge to formulate and solve problems and perform tasks typical for	Laboratory work	inquiry methods	Activity during classes, practical tests				

Subject programme

	professional activity in the mechatronics	
	industry.	
	Student has sufficient skills to use the norms	
K_U05	and standards appropriate for software	
	design.	
	Student is able to assess the suitability and	
V 1115	choose the appropriate methods and tools to	
K_U15	solve a simple object-oriented programming	
	task in the field of Mechatronics.	

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	81% - 90%	db
51% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Practical test 1	bdb (5)	5*50%	2,5
Practical test 2	bdb (5)	5*50%	2,5
Final result			5

10. The learning contents with the form of the class activities on which they are carried out

(Laboratory work)

- 1. Introduction to object-oriented programming;
- 2. Classes (static members, static classes, Reference Types);
- 3. Members of classes;
- 4. Interfaces;
- 5. Inheritance;
- 6. Method overloading;
- 7. Virtual methods;
- 8. Abstract classes and methods;
- 9. Object Lifetime;
- 10. Exceptions;
- 11. Delegates;
- 12. Lambdas
- 11. Required teaching aids

Laboratory classes - specialist laboratory

- **12.** Literature:
 - a. Basic literature:

Microsoft Visual C#. Step by step., Sharp John, Redmond, 2015

a. Supplementary literature:

Beginning C# 2008, Christian Gross, New York, 2007

b. Internet sources:

https://docs.microsoft.com/

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname			
1. Laboratory classes	Uniszkiewicz Cezary, mgr			